Rolling bearing health status assessment based on ITD-GMM method
نویسندگان
چکیده
منابع مشابه
Assessment Method for Rolling Bearing Performance Degradation Using TESPAR and GMM
Rolling bearing performance degradation assessment has been receiving much attention for which itscrucial role to realize CBM(condition-based maintenance).This paper proposed a novel bearing performance degradation method based on TESPAR(Time Encoded Signal Processing and Recognition)and GMM(Gauss Mixture Model). TESPAR is used to extracted features which constitute A-matrix. GMM is utilized to...
متن کاملFault Diagnosis Method Based on a New Supervised Locally Linear Embedding Algorithm for Rolling Bearing
In view of the complexity and nonlinearity of rolling bearings, this paper presents a new supervised locally linear embedding method (R-NSLLE) for feature extraction. In general, traditional LLE can capture the local structure of a rolling bearing. However it may lead to limited effectiveness if data is sparse or non-uniformly distributed. Moreover, like other manifold learning algorithms, the ...
متن کاملFeature Extraction Method of Rolling Bearing Fault Signal Based on EEMD and Cloud Model Characteristic Entropy
The randomness and fuzziness that exist in rolling bearings when faults occur result in uncertainty in acquisition signals and reduce the accuracy of signal feature extraction. To solve this problem, this study proposes a new method in which cloud model characteristic entropy (CMCE) is set as the signal characteristic eigenvalue. This approach can overcome the disadvantages of traditional entro...
متن کاملWavelet filter-based weak signature detection method and its application on rolling element bearing prognostics
De-noising and extraction of the weak signature are crucial to fault prognostics in which case features are often very weak and masked by noise. The wavelet transform has been widely used in signal de-noising due to its extraordinary time-frequency representation capability. In this paper, the performance of wavelet decomposition-based de-noising and wavelet filter-based de-noising methods are ...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Vibroengineering PROCEDIA
سال: 2017
ISSN: 2345-0533
DOI: 10.21595/vp.2017.19497